Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/33440
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHalawani, Raid-
dc.contributor.authorBuchert, Michael-
dc.contributor.authorChen, Yi-Ping Phoebe-
dc.date2023-
dc.date.accessioned2023-08-03T00:23:16Z-
dc.date.available2023-08-03T00:23:16Z-
dc.date.issued2023-07-18-
dc.identifier.citationComputers in Biology and Medicine 2023-07-18; 164en_US
dc.identifier.issn1879-0534-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/33440-
dc.description.abstractTumour heterogeneity is one of the critical confounding aspects in decoding tumour growth. Malignant cells display variations in their gene transcription profiles and mutation spectra even when originating from a single progenitor cell. Single-cell and spatial transcriptomics sequencing have recently emerged as key technologies for unravelling tumour heterogeneity. Single-cell sequencing promotes individual cell-type identification through transcriptome-wide gene expression measurements of each cell. Spatial transcriptomics facilitates identification of cell-cell interactions and the structural organization of heterogeneous cells within a tumour tissue through associating spatial RNA abundance of cells at distinct spots in the tissue section. However, extracting features and analyzing single-cell and spatial transcriptomics data poses challenges. Single-cell transcriptome data is extremely noisy and its sparse nature and dropouts can lead to misinterpretation of gene expression and the misclassification of cell types. Deep learning predictive power can overcome data challenges, provide high-resolution analysis and enhance precision oncology applications that involve early cancer prognosis, diagnosis, patient survival estimation and anti-cancer therapy planning. In this paper, we provide a background to and review of the recent progress of deep learning frameworks to investigate tumour heterogeneity using both single-cell and spatial transcriptomics data types.en_US
dc.language.isoeng-
dc.subjectCancer single-Cell RNA-seqen_US
dc.subjectCancer spatial transcriptomicen_US
dc.subjectDeep learningen_US
dc.subjectMolecular subtypesen_US
dc.subjectMulti-modal learningen_US
dc.subjectPrecision oncologyen_US
dc.subjectPrognosisen_US
dc.subjecttumour microenvironmenten_US
dc.titleDeep learning exploration of single-cell and spatially resolved cancer transcriptomics to unravel tumour heterogeneity.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleComputers in Biology and Medicineen_US
dc.identifier.affiliationDepartment of Computer Science and Information Technology, La Trobe University, Melbourne, Australia.en_US
dc.identifier.affiliationSchool of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.en_US
dc.identifier.affiliationOlivia Newton-John Cancer Research Instituteen_US
dc.identifier.doi10.1016/j.compbiomed.2023.107274en_US
dc.type.contentTexten_US
dc.identifier.pubmedid37506451-
dc.description.volume164-
dc.description.startpage107274-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

12
checked on Nov 18, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.