Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/32257
Title: Biophysical characterization and modelling of SCN1A gain-of-function predicts interneuron hyperexcitability and a predisposition to network instability through homeostatic plasticity.
Austin Authors: Berecki, Géza;Bryson, Alexander ;Polster, Tilman;Petrou, Steven
Affiliation: The Florey Institute of Neuroscience and Mental Health
Neurology
Krankenhaus Mara, Bethel Epilepsy Centre, Department of Epileptology, Medical School, Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany.
Issue Date: 1-Apr-2023
Date: 2023-03
Publication information: Neurobiology of Disease 2023; 179
Abstract: SCN1A gain-of-function variants are associated with early onset developmental and epileptic encephalopathies (DEEs) that possess distinct clinical features compared to Dravet syndrome caused by SCN1A loss-of-function. However, it is unclear how SCN1A gain-of-function may predispose to cortical hyper-excitability and seizures. Here, we first report the clinical features of a patient carrying a de novo SCN1A variant (T162I) associated with neonatal-onset DEE, and then characterize the biophysical properties of T162I and three other SCN1A variants associated with neonatal-onset or early infantile DEE (I236V, P1345S, R1636Q). In voltage clamp experiments, three variants (T162I, P1345S and R1636Q) exhibited changes in activation and inactivation properties that enhanced window current, consistent with gain-of-function. Dynamic action potential clamp experiments utilising model neurons incorporating Nav1.1. channels supported a gain-of-function mechanism for all four variants. Here, the T162I, I236V, P1345S, and R1636Q variants exhibited higher peak firing rates relative to wild type and the T162I and R1636Q variants produced a hyperpolarized threshold and reduced neuronal rheobase. To explore the impact of these variants upon cortical excitability, we used a spiking network model containing an excitatory pyramidal cell (PC) and parvalbumin positive (PV) interneuron population. SCN1A gain-of-function was modelled by enhancing the excitability of PV interneurons and then incorporating three simple forms of homeostatic plasticity that restored pyramidal cell firing rates. We found that homeostatic plasticity mechanisms exerted differential impact upon network function, with changes to PV-to-PC and PC-to-PC synaptic strength predisposing to network instability. Overall, our findings support a role for SCN1A gain-of-function and inhibitory interneuron hyperexcitability in early onset DEE. We propose a mechanism through which homeostatic plasticity pathways can predispose to pathological excitatory activity and contribute to phenotypic variability in SCN1A disorders.
URI: https://ahro.austin.org.au/austinjspui/handle/1/32257
DOI: 10.1016/j.nbd.2023.106059
ORCID: 
Journal: Neurobiology of Disease
Start page: 106059
PubMed URL: 36868483
ISSN: 1095-953X
Type: Journal Article
Subjects: Dynamic action potential clamp
Early-onset developmental and epileptic encephalopathy
SCN1A
Spiking cortical network model
Appears in Collections:Journal articles

Show full item record

Page view(s)

38
checked on Nov 18, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.