Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/30238
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBerthelet, Jean-
dc.contributor.authorForoutan, Momeneh-
dc.contributor.authorBhuva, Dharmesh D-
dc.contributor.authorWhitfield, Holly J-
dc.contributor.authorEl-Saafin, Farrah-
dc.contributor.authorCursons, Joseph-
dc.contributor.authorSerrano, Antonin-
dc.contributor.authorMerdas, Michal-
dc.contributor.authorLim, Elgene-
dc.contributor.authorCharafe-Jauffret, Emmanuelle-
dc.contributor.authorGinestier, Christophe-
dc.contributor.authorErnst, Matthias-
dc.contributor.authorHollande, Frédéric-
dc.contributor.authorAnderson, Robin L-
dc.contributor.authorPal, Bhupinder-
dc.contributor.authorYeo, Belinda-
dc.contributor.authorDavis, Melissa J-
dc.contributor.authorMerino, Delphine-
dc.date2022-
dc.date.accessioned2022-06-23T00:31:22Z-
dc.date.available2022-06-23T00:31:22Z-
dc.date.issued2022-05-13-
dc.identifier.citationCancers 2022-05-13; 14(10): 2404.en
dc.identifier.issn2072-6694
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/30238-
dc.description.abstractThe development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy. Here, we generated a series of predictive gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-approved drugs or compounds in early development. To achieve this, we used a cell line-based drug screen with matched transcriptomic data to derive in silico models that we validated in large independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our study foreshadows an effective delivery approach for precision medicine.en
dc.language.isoeng
dc.subjectbreast canceren
dc.subjectcisplatinen
dc.subjectdrug sensitivityen
dc.subjectpharmacogenomicsen
dc.subjectprecision medicineen
dc.subjectpredictive modelingen
dc.titleComputational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin.en
dc.typeJournal Articleen
dc.identifier.journaltitleCancersen
dc.identifier.affiliationOlivia Newton-John Cancer Research Instituteen
dc.identifier.affiliationMedical Oncologyen
dc.identifier.affiliationDepartment of , Austin Health, Melbourne, VIC 3084, Australiaen
dc.identifier.affiliationSchool of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australiaen
dc.identifier.affiliationDepartment of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC 3010, Australiaen
dc.identifier.affiliationImmunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australiaen
dc.identifier.affiliationDepartment of Medicine, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC 3010, Australiaen
dc.identifier.affiliationVictorian Comprehensive Cancer Centre, The University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australiaen
dc.identifier.affiliationGarvan Institute of Medical Research, Darlinghurst, NSW 2010, Australiaen
dc.identifier.affiliationSt Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW 2010, Australiaen
dc.identifier.affiliationBioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australiaen
dc.identifier.affiliationDepartment of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC 3010, Australiaen
dc.identifier.affiliationDepartment of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australiaen
dc.identifier.affiliationCRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille, Epithelial Stem Laboratory, Equipe Labellisée LIGUE Contre le Cancer, 13009 Marseille, France..en
dc.identifier.affiliationSt Vincent's Hospital, Darlinghurst, NSW 2010, Australiaen
dc.identifier.pubmedurihttps://pubmed.ncbi.nlm.nih.gov/35626009/en
dc.identifier.doi10.3390/cancers14102404en
dc.type.contentTexten
dc.identifier.orcid0000-0002-7282-387Xen
dc.identifier.orcid0000-0001-8065-8838en
dc.identifier.orcid0000-0002-7477-3837en
dc.identifier.orcid0000-0002-7046-8392en
dc.identifier.orcid0000-0002-6841-7422en
dc.identifier.orcid0000-0002-8075-6275en
dc.identifier.orcid0000-0002-6399-1177en
dc.identifier.orcid0000-0002-1650-8007en
dc.identifier.orcid0000-0002-3684-4331en
dc.identifier.orcid0000-0002-9218-9917en
dc.identifier.pubmedid35626009
local.name.researcherAnderson, Robin L
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptOlivia Newton-John Cancer Research Institute-
crisitem.author.deptOlivia Newton-John Cancer Research Institute-
crisitem.author.deptOlivia Newton-John Cancer Research Institute-
crisitem.author.deptMedical Oncology-
crisitem.author.deptOlivia Newton-John Cancer Wellness and Research Centre-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

56
checked on Jan 15, 2025

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.