Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/29930
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarbier, Mathieu-
dc.contributor.authorBahlo, Melanie-
dc.contributor.authorPennisi, Alessandra-
dc.contributor.authorJacoupy, Maxime-
dc.contributor.authorTankard, Rick M-
dc.contributor.authorEwenczyk, Claire-
dc.contributor.authorDavies, Kayli C-
dc.contributor.authorLino-Coulon, Patricia-
dc.contributor.authorColace, Claire-
dc.contributor.authorRafehi, Haloom-
dc.contributor.authorAuger, Nicolas-
dc.contributor.authorAnsell, Brendan R E-
dc.contributor.authorvan der Stelt, Ivo-
dc.contributor.authorHowell, Katherine B-
dc.contributor.authorCoutelier, Marie-
dc.contributor.authorAmor, David J-
dc.contributor.authorMundwiller, Emeline-
dc.contributor.authorGuillot-Noël, Lena-
dc.contributor.authorStorey, Elsdon-
dc.contributor.authorGardner, R J McKinlay-
dc.contributor.authorWallis, Mathew J-
dc.contributor.authorBrusco, Alfredo-
dc.contributor.authorCorti, Olga-
dc.contributor.authorRötig, Agnès-
dc.contributor.authorLeventer, Richard J-
dc.contributor.authorBrice, Alexis-
dc.contributor.authorDelatycki, Martin B-
dc.contributor.authorStevanin, Giovanni-
dc.contributor.authorLockhart, Paul J-
dc.contributor.authorDurr, Alexandra-
dc.date2022-05-07-
dc.date.accessioned2022-06-22T06:40:48Z-
dc.date.available2022-06-22T06:40:48Z-
dc.date.issued2022-07-
dc.identifier.citationAnnals of Neurology 2022; 92(1): 122-137en
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/29930-
dc.description.abstractDominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data were interrogated in a cohort of 796 ataxia patients of unknown etiology. The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. ANN NEUROL 2022;92:122-137.en
dc.language.isoeng-
dc.titleHeterozygous PNPT1 Variants Cause Spinocerebellar Ataxia Type 25.en
dc.typeJournal Articleen
dc.identifier.journaltitleAnnals of Neurologyen
dc.identifier.affiliationClinical Geneticsen
dc.identifier.affiliationDepartment of Medical Biology, University of Melbourne, Melbourne, Victoria, Australiaen
dc.identifier.affiliationBruce Lefroy Centre, Murdoch Children's Research Institute, Melbourne, Victoria, Australiaen
dc.identifier.affiliationDepartment of Paediatrics, University of Melbourne, Melbourne, Victoria, Australiaen
dc.identifier.affiliationDonders Centre for Neuroscience, Faculty of Science, Radboud University, Nijmegen, The Netherlandsen
dc.identifier.affiliationDepartment of Neurology, Royal Children's Hospital, Melbourne, Victoria, Australiaen
dc.identifier.affiliationMurdoch Children's Research Institute, Melbourne, Victoria, Australiaen
dc.identifier.affiliationDepartment of Medicine, University of Melbourne, Austin Health, Melbourne, Australiaen
dc.identifier.affiliationSchool of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australiaen
dc.identifier.affiliationVictorian Clinical Genetics Service, Melbourne, Australiaen
dc.identifier.affiliationPopulation Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australiaen
dc.identifier.affiliationSorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Franceen
dc.identifier.affiliationClinical Genetics Group, University of Otago, Dunedin, New Zealanden
dc.identifier.affiliationDepartment of Medical Sciences, University of Torino, Torino, Italyen
dc.identifier.affiliationNecker Hospital, APHP, Reference Center for Mitochondrial Diseases, Genetics Department, Institut Imagine, University of Paris, Paris, Franceen
dc.identifier.affiliationSchool of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australiaen
dc.identifier.affiliationInserm UMR_S1163, Institut Imagine, Paris, Franceen
dc.identifier.affiliationParis Sciences Lettres Research University, EPHE, Paris, Franceen
dc.identifier.pubmedurihttps://pubmed.ncbi.nlm.nih.gov/35411967/en
dc.identifier.doi10.1002/ana.26366en
dc.type.contentTexten
dc.identifier.orcidhttps://orcid.org/0000-0002-5154-2163en
dc.identifier.orcidhttps://orcid.org/0000-0001-5132-0774en
dc.identifier.orcidhttps://orcid.org/0000-0002-4525-8633en
dc.identifier.orcidhttps://orcid.org/0000-0003-1841-7747en
dc.identifier.orcidhttps://orcid.org/0000-0002-8847-9401en
dc.identifier.orcidhttps://orcid.org/0000-0002-8795-6501en
dc.identifier.orcidhttps://orcid.org/0000-0002-2977-0282en
dc.identifier.orcidhttps://orcid.org/0000-0002-8954-4930en
dc.identifier.orcidhttps://orcid.org/0000-0003-0297-897Xen
dc.identifier.orcidhttps://orcid.org/0000-0002-5469-8411en
dc.identifier.orcidhttps://orcid.org/0000-0001-7191-8511en
dc.identifier.orcidhttps://orcid.org/0000-0002-5441-1732en
dc.identifier.orcidhttps://orcid.org/0000-0002-8318-7231en
dc.identifier.orcidhttps://orcid.org/0000-0003-2093-7389en
dc.identifier.orcidhttps://orcid.org/0000-0003-0589-0703en
dc.identifier.orcidhttps://orcid.org/0000-0003-0362-5607en
dc.identifier.orcidhttps://orcid.org/0000-0002-0941-3990en
dc.identifier.orcidhttps://orcid.org/0000-0001-9368-8657en
dc.identifier.orcidhttps://orcid.org/0000-0003-2531-8413en
dc.identifier.orcidhttps://orcid.org/0000-0002-8921-7104en
dc.identifier.pubmedid35411967-
local.name.researcherDelatycki, Martin B
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptClinical Genetics-
crisitem.author.deptClinical Genetics-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

68
checked on Jan 13, 2025

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.