Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/26610
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yeo, Melissa | - |
dc.contributor.author | Kok, Hong Kuan | - |
dc.contributor.author | Kutaiba, Numan | - |
dc.contributor.author | Maingard, Julian | - |
dc.contributor.author | Thijs, Vincent N | - |
dc.contributor.author | Tahayori, Bahman | - |
dc.contributor.author | Russell, Jeremy H | - |
dc.contributor.author | Jhamb, Ashu | - |
dc.contributor.author | Chandra, Ronil V | - |
dc.contributor.author | Brooks, Duncan Mark | - |
dc.contributor.author | Barras, Christen D | - |
dc.contributor.author | Asadi, Hamed | - |
dc.date | 2021-05-28 | - |
dc.date.accessioned | 2021-05-31T22:58:58Z | - |
dc.date.available | 2021-05-31T22:58:58Z | - |
dc.date.issued | 2021-05-28 | - |
dc.identifier.citation | Journal of Medical Imaging and Radiation Oncology 2021; online first: 28 May | en |
dc.identifier.uri | https://ahro.austin.org.au/austinjspui/handle/1/26610 | - |
dc.description.abstract | Artificial intelligence (AI) is making a profound impact in healthcare, with the number of AI applications in medicine increasing substantially over the past five years. In acute stroke, it is playing an increasingly important role in clinical decision-making. Contemporary advances have increased the amount of information - both clinical and radiological - which clinicians must consider when managing patients. In the time-critical setting of acute stroke, AI offers the tools to rapidly evaluate and consolidate available information, extracting specific predictions from rich, noisy data. It has been applied to the automatic detection of stroke lesions on imaging and can guide treatment decisions through the prediction of tissue outcomes and long-term functional outcomes. This review examines the current state of AI applications in stroke, exploring their potential to reform stroke care through clinical decision support, as well as the challenges and limitations which must be addressed to facilitate their acceptance and adoption for clinical use. | en |
dc.language.iso | eng | |
dc.subject | artificial intelligence | en |
dc.subject | computer aided diagnosis | en |
dc.subject | computers in radiology | en |
dc.subject | decision support | en |
dc.subject | machine learning | en |
dc.subject | neuroradiology | en |
dc.subject | outcome prediction | en |
dc.subject | Stroke | en |
dc.title | Artificial intelligence in clinical decision support and outcome prediction - applications in stroke. | en |
dc.type | Journal Article | en |
dc.identifier.journaltitle | Journal of Medical Imaging and Radiation Oncology | en |
dc.identifier.affiliation | Interventional Radiology Service, Department of Radiology, Northern Health, Melbourne, Victoria, Australia | en |
dc.identifier.affiliation | School of Medicine, Faculty of Health, Deakin University, Burwood, Victoria, Australia | en |
dc.identifier.affiliation | Interventional Neuroradiology Unit, Monash Health, Clayton, Victoria, Australia | en |
dc.identifier.affiliation | Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia | en |
dc.identifier.affiliation | Department of Radiology, St Vincent's Hospital, Melbourne, Victoria, Australia | en |
dc.identifier.affiliation | Radiology | en |
dc.identifier.affiliation | School of Medicine, University of Melbourne, Melbourne, Victoria, Australia | en |
dc.identifier.affiliation | Stroke Theme, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia | en |
dc.identifier.affiliation | Neurology | en |
dc.identifier.affiliation | Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia | en |
dc.identifier.affiliation | IBM Research Australia, Melbourne, Victoria, Australia | en |
dc.identifier.affiliation | Neurosurgery | en |
dc.identifier.affiliation | South Australian Institute of Health and Medical Research, Adelaide, South Australia, Australia | en |
dc.identifier.affiliation | School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia | en |
dc.identifier.doi | 10.1111/1754-9485.13193 | en |
dc.type.content | Text | en |
dc.identifier.orcid | 0000-0001-5568-7303 | en |
dc.identifier.orcid | 0000-0003-4627-9847 | en |
dc.identifier.orcid | 0000-0003-1899-1909 | en |
dc.identifier.orcid | 0000-0003-2475-9727 | en |
dc.identifier.pubmedid | 34050596 | |
local.name.researcher | Asadi, Hamed | |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.openairetype | Journal Article | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Radiology | - |
crisitem.author.dept | Neurology | - |
crisitem.author.dept | The Florey Institute of Neuroscience and Mental Health | - |
crisitem.author.dept | Neurosurgery | - |
crisitem.author.dept | Radiology | - |
crisitem.author.dept | Radiology | - |
Appears in Collections: | Journal articles |
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.