Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/25216
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOxley, Thomas J-
dc.contributor.authorYoo, Peter E-
dc.contributor.authorRind, Gil S-
dc.contributor.authorRonayne, Stephen M-
dc.contributor.authorLee, C M Sarah-
dc.contributor.authorBird, Christin-
dc.contributor.authorHampshire, Victoria-
dc.contributor.authorSharma, Rahul P-
dc.contributor.authorMorokoff, Andrew-
dc.contributor.authorWilliams, Daryl L-
dc.contributor.authorMacIsaac, Christopher-
dc.contributor.authorHoward, Mark E-
dc.contributor.authorIrving, Lou-
dc.contributor.authorVrljic, Ivan-
dc.contributor.authorWilliams, Cameron-
dc.contributor.authorJohn, Sam E-
dc.contributor.authorWeissenborn, Frank-
dc.contributor.authorDazenko, Madeleine-
dc.contributor.authorBalabanski, Anna H-
dc.contributor.authorFriedenberg, David-
dc.contributor.authorBurkitt, Anthony N-
dc.contributor.authorWong, Yan T-
dc.contributor.authorDrummond, Katharine J-
dc.contributor.authorDesmond, Patricia-
dc.contributor.authorWeber, Douglas-
dc.contributor.authorDenison, Timothy-
dc.contributor.authorHochberg, Leigh R-
dc.contributor.authorMathers, Susan-
dc.contributor.authorO'Brien, Terence J-
dc.contributor.authorMay, Clive N-
dc.contributor.authorMocco, J-
dc.contributor.authorGrayden, David B-
dc.contributor.authorCampbell, Bruce C V-
dc.contributor.authorMitchell, Peter-
dc.contributor.authorOpie, Nicholas L-
dc.date2020-10-28-
dc.date.accessioned2020-11-05T03:48:49Z-
dc.date.available2020-11-05T03:48:49Z-
dc.date.issued2021-02-
dc.identifier.citationJournal of neurointerventional surgery 2021; 13(2): 102-108-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/25216-
dc.description.abstractImplantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.-
dc.language.isoeng-
dc.subjectbrain-
dc.subjectdevice-
dc.subjectintervention-
dc.subjecttechnology-
dc.subjectvein-
dc.titleMotor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience.-
dc.typeJournal Article-
dc.identifier.journaltitleJournal of neurointerventional surgery-
dc.identifier.affiliationSynchron, Inc, Campbell, California, USAen
dc.identifier.affiliationInterventional Cardiology, Cardiovascular Medicine Faculty, Stanford University, Stanford, California, USAen
dc.identifier.affiliationBattelle Memorial Institute, Columbus, Ohio, USAen
dc.identifier.affiliationDepartment of Mechanical Engineering and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USAen
dc.identifier.affiliationCenter for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Cambridge, Massachusetts, USAen
dc.identifier.affiliationDepartment of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australiaen
dc.identifier.affiliationNeurosurgery, The Mount Sinai Health System, New York, New York, USAen
dc.identifier.affiliationVascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australiaen
dc.identifier.affiliationMedicine, University of Melbourne, Parkville, Victoria, Australiaen
dc.identifier.affiliationNeurology, Royal Melbourne Hospital, Melbourne, Victoria, Australiaen
dc.identifier.affiliationFlorey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australiaen
dc.identifier.affiliationNeurology, Melbourne Health, Parkville, Victoria, Australiaen
dc.identifier.affiliationSynchron, Inc, Campbell, California, USAen
dc.identifier.affiliationInstitute of Biomedical Engineering, Oxford University, Oxford, Oxfordshire, UKen
dc.identifier.affiliationNeurology, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australiaen
dc.identifier.affiliationNeurosurgery, Melbourne Health, Parkville, Victoria, Australiaen
dc.identifier.affiliationVascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australiaen
dc.identifier.affiliationDepartment of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australiaen
dc.identifier.affiliationRadiology, Melbourne Health, Parkville, Victoria, Australiaen
dc.identifier.affiliationRespiratory Medicine, Melbourne Health, Parkville, Victoria, Australiaen
dc.identifier.affiliationInstitute for Breathing and Sleepen
dc.identifier.affiliationIntensive Care Unit, Melbourne Health, Parkville, Victoria, Australiaen
dc.identifier.affiliationAnaesthesia, Melbourne Health, Parkville, Victoria, Australiaen
dc.identifier.doi10.1136/neurintsurg-2020-016862-
dc.identifier.orcid0000-0001-7772-1496-
dc.identifier.pubmedid33115813-
local.name.researcherHoward, Mark E
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
crisitem.author.deptInstitute for Breathing and Sleep-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

70
checked on Dec 25, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.