Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/25033
Title: | A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. | Austin Authors: | Cheung, Carol Y;Xu, Dejiang;Cheng, Ching-Yu;Sabanayagam, Charumathi;Tham, Yih-Chung;Yu, Marco;Rim, Tyler Hyungtaek;Chai, Chew Yian;Gopinath, Bamini;Mitchell, Paul L R ;Poulton, Richie;Moffitt, Terrie E;Caspi, Avshalom;Yam, Jason C;Tham, Clement C;Jonas, Jost B;Wang, Ya Xing;Song, Su Jeong;Burrell, Louise M ;Farouque, Omar ;Li, Ling Jun;Tan, Gavin;Ting, Daniel S W;Hsu, Wynne;Lee, Mong Li;Wong, Tien Y | Affiliation: | Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore School of Computing, National University of Singapore, Singapore, Singapore Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China Emergency Medicine Department, National University Hospital, Singapore, Singapore Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Centre for Vision Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand Department of Psychology and Neuroscience, Duke University, Durham, NC, USA Medicine (University of Melbourne) Department of Ophthalmology, Medical Faculty Mannheim, Ruprecht-Karls-University, Heidelberg, Germany Beijing Ophthalmology & Visual Science Key Lab, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea Department of Cardiology, Austin Health, Austin Hospital, and Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia Cardiology Division of Obstetrics and Gynaecology, KK Women's and Children's Hospital, Singapore, Singapore School of Computing, National University of Singapore, Singapore, Singapore |
Issue Date: | Jun-2021 | Date: | 2020-10-12 | Publication information: | Nature Biomedical Engineering 2021; 5(6): 498-508 | Abstract: | Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using diverse multiethnic multicountry datasets that comprise more than 70,000 images. Retinal-vessel calibre measured by the models and by expert human graders showed high agreement, with overall intraclass correlation coefficients of between 0.82 and 0.95. The models performed comparably to or better than expert graders in associations between measurements of retinal-vessel calibre and CVD risk factors, including blood pressure, body-mass index, total cholesterol and glycated-haemoglobin levels. In retrospectively measured prospective datasets from a population-based study, baseline measurements performed by the deep-learning system were associated with incident CVD. Our findings motivate the development of clinically applicable explainable end-to-end deep-learning systems for the prediction of CVD on the basis of the features of retinal vessels in retinal photographs. | URI: | https://ahro.austin.org.au/austinjspui/handle/1/25033 | DOI: | 10.1038/s41551-020-00626-4 | ORCID: | 0000-0003-0655-885X 0000-0002-4042-4719 0000-0002-6752-797X 0000-0002-1052-4583 0000-0003-4407-6907 0000-0003-2972-5227 0000-0003-2749-7793 0000-0003-1863-7539 0000-0003-2821-1451 0000-0002-4142-8893 0000-0002-9636-388X 0000-0002-8448-1264 |
Journal: | Nature Biomedical Engineering | PubMed URL: | 33046867 | Type: | Journal Article |
Appears in Collections: | Journal articles |
Show full item record
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.