Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/22487
Title: | GABA-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons. | Austin Authors: | Bryson, Alexander ;Hatch, Robert John;Zandt, Bas-Jan;Rossert, Christian;Berkovic, Samuel F ;Reid, Christopher A;Grayden, David B;Hill, Sean L;Petrou, Steven | Affiliation: | Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland |
Issue Date: | 23-Jan-2020 | Date: | 2020-01-23 | Publication information: | Proceedings of the National Academy of Sciences of the United States of America 2020; 117(6): 3192-3202 | Abstract: | The binding of GABA (γ-aminobutyric acid) to extrasynaptic GABAA receptors generates tonic inhibition that acts as a powerful modulator of cortical network activity. Despite GABA being present throughout the extracellular space of the brain, previous work has shown that GABA may differentially modulate the excitability of neuron subtypes according to variation in chloride gradient. Here, using biophysically detailed neuron models, we predict that tonic inhibition can differentially modulate the excitability of neuron subtypes according to variation in electrophysiological properties. Surprisingly, tonic inhibition increased the responsiveness (or gain) in models with features typical for somatostatin interneurons but decreased gain in models with features typical for parvalbumin interneurons. Patch-clamp recordings from cortical interneurons supported these predictions, and further in silico analysis was then performed to seek a putative mechanism underlying gain modulation. We found that gain modulation in models was dependent upon the magnitude of tonic current generated at depolarized membrane potential-a property associated with outward rectifying GABAA receptors. Furthermore, tonic inhibition produced two biophysical changes in models of relevance to neuronal excitability: 1) enhanced action potential repolarization via increased current flow into the dendritic compartment, and 2) reduced activation of voltage-dependent potassium channels. Finally, we show theoretically that reduced potassium channel activation selectively increases gain in models possessing action potential dynamics typical for somatostatin interneurons. Potassium channels in parvalbumin-type models deactivate rapidly and are unavailable for further modulation. These findings show that GABA can differentially modulate interneuron excitability and suggest a mechanism through which this occurs in silico via differences of intrinsic electrophysiological properties. | URI: | https://ahro.austin.org.au/austinjspui/handle/1/22487 | DOI: | 10.1073/pnas.1906369117 | ORCID: | 0000-0003-4580-841X 0000-0002-5497-7234 0000-0001-8055-860X |
Journal: | Proceedings of the National Academy of Sciences of the United States of America | PubMed URL: | 31974304 | Type: | Journal Article | Subjects: | GABA interneuron subtypes neuromodulation neuronal excitability tonic inhibition |
Appears in Collections: | Journal articles |
Show full item record
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.