Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/21120
Title: | Genetic absence epilepsy: Effective connectivity from piriform cortex to mediodorsal thalamus. | Austin Authors: | Young, James C;Paolini, Antonio G;Pedersen, Mangor;Jackson, Graeme D | Affiliation: | Department of Neurology, Austin Health, Heidelberg, Victoria, Australia School of Psychology and Public Health, La Trobe University, Melbourne, Australia The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia |
Issue Date: | Aug-2019 | Date: | 2019-06-26 | Publication information: | Epilepsy & behavior : E&B 2019; 97: 219-228 | Abstract: | The objective of the study was to quantify effective connectivity from the piriform cortex to mediodorsal thalamus, in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Local field potentials (LFPs) were recorded using microelectrode arrays implanted in the mediodorsal thalamus and piriform cortex, in three urethane anesthetized GAERS and three control rats. Screw electrodes were placed in the primary motor cortex to identify epileptiform discharges. We used transfer entropy to measure effective connectivity from piriform cortex to mediodorsal thalamus prior to and during generalized epileptiform discharges. We observed increased theta band effective connectivity from piriform cortex to mediodorsal thalamus, prior to and during epileptiform discharges in GAERS compared with controls. Increased effective connectivity was also observed in beta and gamma bands from the piriform cortex to mediodorsal thalamus, but only during epileptiform discharges. This preliminary study suggests that increased effective theta connectivity from the piriform cortex to the mediodorsal thalamus may be a feature of the 'epileptic network' associated with genetic absence epilepsy. Our findings indicate an underlying predisposition of this direct pathway to propagate epileptiform discharges in genetic absence epilepsy. | URI: | https://ahro.austin.org.au/austinjspui/handle/1/21120 | DOI: | 10.1016/j.yebeh.2019.05.042 | ORCID: | 0000-0002-7917-5326 |
Journal: | Epilepsy & behavior : E&B | PubMed URL: | 31254842 | Type: | Journal Article | Subjects: | Absence epilepsy Effective connectivity Mediodorsal thalamus Piriform cortex Transfer entropy |
Appears in Collections: | Journal articles |
Show full item record
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.