Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/16790
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDahan, Ariel-
dc.contributor.authorGaillard, Franken
dc.contributor.authorWang, Waylanden
dc.date2017-07-29-
dc.date.accessioned2017-08-10T01:33:54Z-
dc.date.available2017-08-10T01:33:54Z-
dc.date.issued2018-01-
dc.identifier.citationJournal of the American College of Radiology 2018; 15 (1 pt A): 93-96en_US
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/16790-
dc.titleComputer-aided detection can bridge the skill gap in multiple sclerosis monitoringen_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleJournal of the American College of Radiologyen_US
dc.identifier.affiliationSt Vincent's Hospital Melbourne, Fitzroy, Victoria, Australiaen_US
dc.identifier.affiliationDepartment of Radiology, University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, Australiaen_US
dc.identifier.affiliationDepartment of Radiology, Austin Health, Heidelberg, Victoria, Australiaen_US
dc.type.studyortrialCase Series and Case Reportsen_US
dc.identifier.pubmedurihttps://pubmed.ncbi.nlm.nih.gov/28764954en_US
dc.identifier.doi10.1016/j.jacr.2017.06.030en_US
dc.type.contentTexten_US
dc.type.austinJournal Articleen_US
local.name.researcherDahan, Ariel
item.grantfulltextnone-
item.openairetypeJournal Article-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptRadiology-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

46
checked on Nov 15, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.