Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/10400
Title: | Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. | Austin Authors: | Masterton, Richard A J;Abbott, David F ;Fleming, Steven W;Jackson, Graeme D | Affiliation: | Brain Research Institute, Neurosciences Building, Austin Health, Banksia Street, Heidelberg Heights, Victoria 3081, Australia | Issue Date: | 18-May-2007 | Publication information: | Neuroimage 2007; 37(1): 202-11 | Abstract: | Recording the electroencephalogram (EEG) during functional magnetic resonance imaging (fMRI) permits the identification of haemodynamic changes associated with EEG events. However, subject motion within the MR scanner can cause unpredictable and frustrating artefacts on the EEG that may appear focally, bilaterally or unilaterally and can sometimes be confused for epileptiform activity. Motion may arise from a number of sources: small involuntary cardiac-related body movements (ballistocardiogram); acoustic vibrations due to the scanner machinery; and voluntary subject movements. Here we describe a new real-time technique for removing ballistocardiogram (BCG) and movement artefact from EEG recordings in the MR scanner using a novel method for recording subject motion. We record the current induced in a number of wire loops, attached to a cap worn by the subject, due to motion in the static magnetic field of the scanner (Faraday's Law). This is the same process that leads to the motion artefacts on the EEG, and hence these signals are ideally suited to filtering these artefacts from the EEG. Our filter uses a linear adaptive technique based upon the Recursive Least Squares (RLS) algorithm. We demonstrate in both simulations and real EEG recordings from epilepsy patients that our filter significantly reduces the artefact power whilst preserving the underlying EEG signal. | Gov't Doc #: | 17582785 | URI: | https://ahro.austin.org.au/austinjspui/handle/1/10400 | DOI: | 10.1016/j.neuroimage.2007.02.060 | Journal: | NeuroImage | URL: | https://pubmed.ncbi.nlm.nih.gov/17582785 | Type: | Journal Article | Subjects: | Action Potentials.physiology Adult Artifacts Ballistocardiography Cerebral Cortex.physiopathology Computer Simulation Electroencephalography.methods Epilepsy.diagnosis.physiopathology Female Fourier Analysis Humans Image Processing, Computer-Assisted.methods Least-Squares Analysis Magnetic Resonance Imaging.methods Male Middle Aged Reference Values Reproducibility of Results Signal Processing, Computer-Assisted Software |
Appears in Collections: | Journal articles |
Show full item record
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.